Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Active-site mapping of a Populus xyloglucan endo-transglycosylase with a library of xylogluco-oligosaccharides.

Identifieur interne : 003A02 ( Main/Exploration ); précédent : 003A01; suivant : 003A03

Active-site mapping of a Populus xyloglucan endo-transglycosylase with a library of xylogluco-oligosaccharides.

Auteurs : Marc Saura-Valls [Espagne] ; Régis Fauré ; Harry Brumer ; Tuula T. Teeri ; Sylvain Cottaz ; Hugues Driguez ; Antoni Planas

Source :

RBID : pubmed:18511421

Descripteurs français

English descriptors

Abstract

Restructuring the network of xyloglucan (XG) and cellulose during plant cell wall morphogenesis involves the action of xyloglucan endo-transglycosylases (XETs). They cleave the XG chains and transfer the enzyme-bound XG fragment to another XG molecule, thus allowing transient loosening of the cell wall and also incorporation of nascent XG during expansion. The substrate specificity of a XET from Populus (PttXET16-34) has been analyzed by mapping the enzyme binding site with a library of xylogluco-oligosaccharides as donor substrates using a labeled heptasaccharide as acceptor. The extended binding cleft of the enzyme is composed of four negative and three positive subsites (with the catalytic residues between subsites -1 and +1). Donor binding is dominated by the higher affinity of the XXXG moiety (G=Glcbeta(1-->4) and X=Xylalpha(1-->6)Glcbeta(1-->4)) of the substrate for positive subsites, whereas negative subsites have a more relaxed specificity, able to bind (and transfer to the acceptor) a cello-oligosaccharyl moiety of hybrid substrates such as GGGGXXXG. Subsite mapping with k(cat)/K(m) values for the donor substrates showed that a GG-unit on negative and -XXG on positive subsites are the minimal requirements for activity. Subsites -2 and -3 (for backbone Glc residues) and +2' (for Xyl substitution at Glc in subsite +2) have the largest contribution to transition state stabilization. GalGXXXGXXXG (Gal=Galbeta(1-->4)) is the best donor substrate with a "blocked" nonreducing end that prevents polymerization reactions and yields a single transglycosylation product. Its kinetics have unambiguously established that the enzyme operates by a ping-pong mechanism with competitive inhibition by the acceptor.

DOI: 10.1074/jbc.M803058200
PubMed: 18511421


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Active-site mapping of a Populus xyloglucan endo-transglycosylase with a library of xylogluco-oligosaccharides.</title>
<author>
<name sortKey="Saura Valls, Marc" sort="Saura Valls, Marc" uniqKey="Saura Valls M" first="Marc" last="Saura-Valls">Marc Saura-Valls</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Faure, Regis" sort="Faure, Regis" uniqKey="Faure R" first="Régis" last="Fauré">Régis Fauré</name>
</author>
<author>
<name sortKey="Brumer, Harry" sort="Brumer, Harry" uniqKey="Brumer H" first="Harry" last="Brumer">Harry Brumer</name>
</author>
<author>
<name sortKey="Teeri, Tuula T" sort="Teeri, Tuula T" uniqKey="Teeri T" first="Tuula T" last="Teeri">Tuula T. Teeri</name>
</author>
<author>
<name sortKey="Cottaz, Sylvain" sort="Cottaz, Sylvain" uniqKey="Cottaz S" first="Sylvain" last="Cottaz">Sylvain Cottaz</name>
</author>
<author>
<name sortKey="Driguez, Hugues" sort="Driguez, Hugues" uniqKey="Driguez H" first="Hugues" last="Driguez">Hugues Driguez</name>
</author>
<author>
<name sortKey="Planas, Antoni" sort="Planas, Antoni" uniqKey="Planas A" first="Antoni" last="Planas">Antoni Planas</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18511421</idno>
<idno type="pmid">18511421</idno>
<idno type="doi">10.1074/jbc.M803058200</idno>
<idno type="wicri:Area/Main/Corpus">003877</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003877</idno>
<idno type="wicri:Area/Main/Curation">003877</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003877</idno>
<idno type="wicri:Area/Main/Exploration">003877</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Active-site mapping of a Populus xyloglucan endo-transglycosylase with a library of xylogluco-oligosaccharides.</title>
<author>
<name sortKey="Saura Valls, Marc" sort="Saura Valls, Marc" uniqKey="Saura Valls M" first="Marc" last="Saura-Valls">Marc Saura-Valls</name>
<affiliation wicri:level="2">
<nlm:affiliation>Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Faure, Regis" sort="Faure, Regis" uniqKey="Faure R" first="Régis" last="Fauré">Régis Fauré</name>
</author>
<author>
<name sortKey="Brumer, Harry" sort="Brumer, Harry" uniqKey="Brumer H" first="Harry" last="Brumer">Harry Brumer</name>
</author>
<author>
<name sortKey="Teeri, Tuula T" sort="Teeri, Tuula T" uniqKey="Teeri T" first="Tuula T" last="Teeri">Tuula T. Teeri</name>
</author>
<author>
<name sortKey="Cottaz, Sylvain" sort="Cottaz, Sylvain" uniqKey="Cottaz S" first="Sylvain" last="Cottaz">Sylvain Cottaz</name>
</author>
<author>
<name sortKey="Driguez, Hugues" sort="Driguez, Hugues" uniqKey="Driguez H" first="Hugues" last="Driguez">Hugues Driguez</name>
</author>
<author>
<name sortKey="Planas, Antoni" sort="Planas, Antoni" uniqKey="Planas A" first="Antoni" last="Planas">Antoni Planas</name>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="ISSN">0021-9258</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding Sites (MeSH)</term>
<term>Electrophoresis, Capillary (MeSH)</term>
<term>Glycosyltransferases (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Naphthalenes (metabolism)</term>
<term>Oligosaccharides (metabolism)</term>
<term>Populus (enzymology)</term>
<term>Small Molecule Libraries (metabolism)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bibliothèques de petites molécules (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Glycosyltransferase (métabolisme)</term>
<term>Naphtalènes (métabolisme)</term>
<term>Oligosaccharides (métabolisme)</term>
<term>Populus (enzymologie)</term>
<term>Sites de fixation (MeSH)</term>
<term>Électrophorèse capillaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glycosyltransferases</term>
<term>Naphthalenes</term>
<term>Oligosaccharides</term>
<term>Small Molecule Libraries</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bibliothèques de petites molécules</term>
<term>Glycosyltransferase</term>
<term>Naphtalènes</term>
<term>Oligosaccharides</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Binding Sites</term>
<term>Electrophoresis, Capillary</term>
<term>Kinetics</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Facteurs temps</term>
<term>Sites de fixation</term>
<term>Électrophorèse capillaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Restructuring the network of xyloglucan (XG) and cellulose during plant cell wall morphogenesis involves the action of xyloglucan endo-transglycosylases (XETs). They cleave the XG chains and transfer the enzyme-bound XG fragment to another XG molecule, thus allowing transient loosening of the cell wall and also incorporation of nascent XG during expansion. The substrate specificity of a XET from Populus (PttXET16-34) has been analyzed by mapping the enzyme binding site with a library of xylogluco-oligosaccharides as donor substrates using a labeled heptasaccharide as acceptor. The extended binding cleft of the enzyme is composed of four negative and three positive subsites (with the catalytic residues between subsites -1 and +1). Donor binding is dominated by the higher affinity of the XXXG moiety (G=Glcbeta(1-->4) and X=Xylalpha(1-->6)Glcbeta(1-->4)) of the substrate for positive subsites, whereas negative subsites have a more relaxed specificity, able to bind (and transfer to the acceptor) a cello-oligosaccharyl moiety of hybrid substrates such as GGGGXXXG. Subsite mapping with k(cat)/K(m) values for the donor substrates showed that a GG-unit on negative and -XXG on positive subsites are the minimal requirements for activity. Subsites -2 and -3 (for backbone Glc residues) and +2' (for Xyl substitution at Glc in subsite +2) have the largest contribution to transition state stabilization. GalGXXXGXXXG (Gal=Galbeta(1-->4)) is the best donor substrate with a "blocked" nonreducing end that prevents polymerization reactions and yields a single transglycosylation product. Its kinetics have unambiguously established that the enzyme operates by a ping-pong mechanism with competitive inhibition by the acceptor.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18511421</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>09</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0021-9258</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>283</Volume>
<Issue>32</Issue>
<PubDate>
<Year>2008</Year>
<Month>Aug</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Active-site mapping of a Populus xyloglucan endo-transglycosylase with a library of xylogluco-oligosaccharides.</ArticleTitle>
<Pagination>
<MedlinePgn>21853-63</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M803058200</ELocationID>
<Abstract>
<AbstractText>Restructuring the network of xyloglucan (XG) and cellulose during plant cell wall morphogenesis involves the action of xyloglucan endo-transglycosylases (XETs). They cleave the XG chains and transfer the enzyme-bound XG fragment to another XG molecule, thus allowing transient loosening of the cell wall and also incorporation of nascent XG during expansion. The substrate specificity of a XET from Populus (PttXET16-34) has been analyzed by mapping the enzyme binding site with a library of xylogluco-oligosaccharides as donor substrates using a labeled heptasaccharide as acceptor. The extended binding cleft of the enzyme is composed of four negative and three positive subsites (with the catalytic residues between subsites -1 and +1). Donor binding is dominated by the higher affinity of the XXXG moiety (G=Glcbeta(1-->4) and X=Xylalpha(1-->6)Glcbeta(1-->4)) of the substrate for positive subsites, whereas negative subsites have a more relaxed specificity, able to bind (and transfer to the acceptor) a cello-oligosaccharyl moiety of hybrid substrates such as GGGGXXXG. Subsite mapping with k(cat)/K(m) values for the donor substrates showed that a GG-unit on negative and -XXG on positive subsites are the minimal requirements for activity. Subsites -2 and -3 (for backbone Glc residues) and +2' (for Xyl substitution at Glc in subsite +2) have the largest contribution to transition state stabilization. GalGXXXGXXXG (Gal=Galbeta(1-->4)) is the best donor substrate with a "blocked" nonreducing end that prevents polymerization reactions and yields a single transglycosylation product. Its kinetics have unambiguously established that the enzyme operates by a ping-pong mechanism with competitive inhibition by the acceptor.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Saura-Valls</LastName>
<ForeName>Marc</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Biochemistry, Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fauré</LastName>
<ForeName>Régis</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brumer</LastName>
<ForeName>Harry</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Teeri</LastName>
<ForeName>Tuula T</ForeName>
<Initials>TT</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cottaz</LastName>
<ForeName>Sylvain</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Driguez</LastName>
<ForeName>Hugues</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Planas</LastName>
<ForeName>Antoni</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>05</Month>
<Day>28</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009281">Naphthalenes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009844">Oligosaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054852">Small Molecule Libraries</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>D33V8NB7KB</RegistryNumber>
<NameOfSubstance UI="C046465">8-amino-1,3,6-naphthalenetrisulfonic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.-</RegistryNumber>
<NameOfSubstance UI="D016695">Glycosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="C073693">xyloglucan endotransglycosylase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019075" MajorTopicYN="N">Electrophoresis, Capillary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016695" MajorTopicYN="N">Glycosyltransferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009281" MajorTopicYN="N">Naphthalenes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009844" MajorTopicYN="N">Oligosaccharides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054852" MajorTopicYN="N">Small Molecule Libraries</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>9</Month>
<Day>18</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>5</Month>
<Day>31</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18511421</ArticleId>
<ArticleId IdType="pii">M803058200</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M803058200</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Catalogne</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Brumer, Harry" sort="Brumer, Harry" uniqKey="Brumer H" first="Harry" last="Brumer">Harry Brumer</name>
<name sortKey="Cottaz, Sylvain" sort="Cottaz, Sylvain" uniqKey="Cottaz S" first="Sylvain" last="Cottaz">Sylvain Cottaz</name>
<name sortKey="Driguez, Hugues" sort="Driguez, Hugues" uniqKey="Driguez H" first="Hugues" last="Driguez">Hugues Driguez</name>
<name sortKey="Faure, Regis" sort="Faure, Regis" uniqKey="Faure R" first="Régis" last="Fauré">Régis Fauré</name>
<name sortKey="Planas, Antoni" sort="Planas, Antoni" uniqKey="Planas A" first="Antoni" last="Planas">Antoni Planas</name>
<name sortKey="Teeri, Tuula T" sort="Teeri, Tuula T" uniqKey="Teeri T" first="Tuula T" last="Teeri">Tuula T. Teeri</name>
</noCountry>
<country name="Espagne">
<region name="Catalogne">
<name sortKey="Saura Valls, Marc" sort="Saura Valls, Marc" uniqKey="Saura Valls M" first="Marc" last="Saura-Valls">Marc Saura-Valls</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003A02 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003A02 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18511421
   |texte=   Active-site mapping of a Populus xyloglucan endo-transglycosylase with a library of xylogluco-oligosaccharides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18511421" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020